
Data Structures and
Algorithms – Lab 7

2

What is a graph?

• A set of vertices and edges

–Directed/Undirected

–Weighted/Unweighted

–Cyclic/Acyclic

vertex

edge

3

Representation of Graphs

• Adjacency Matrix

–A V x V array, with matrix[i][j] storing
whether there is an edge between the ith

vertex and the jth vertex

• Linked List of Neighbours

–One linked list per vertex, each storing

directly reachable vertices

5

Depth-First Search (DFS)

• Strategy: Go as far as you can (if
you have not visit there), otherwise,
go back and try another way

6

Implementation
DFS (vertex u) {

 mark u as visited

 for each vertex v directly
reachable from u

 if v is unvisited

 DFS (v)

}

• Initially all vertices
are marked as
unvisited

7

Application of DFS:
Topological Sort

• Topological order:
A numbering of the vertices of a
directed acyclic graph such that
every edge from a vertex numbered i
to a vertex numbered j satisfies i<j

• Topological Sort:
Finding the topological order of a
directed acyclic graph

8

Example: Teacher’s Problem

• Emily wants to distribute candies to
N students one by one, with a rule
that if student A is teased by B, A
can receive candy before B.

• Given lists of students teased by
each students, find a possible
sequence to give the candies

9

Breadth-First Search (BFS)

• Instead of going as far as possible,
BFS tries to search all paths.

• BFS makes use of a queue to store
visited (but not dead) vertices,
expanding the path from the earliest
visited vertices.

10

1

4

3

2
5

6

Simulation of BFS

• Queue: 1 4 3 5 2 6

11

Implementation
while queue Q not empty

 dequeue the first vertex u from
Q

 for each vertex v directly
reachable from u

 if v is unvisited
 enqueue v to Q

 mark v as visited

• Initially all vertices
except the start vertex
are marked as unvisited
and the queue contains
the start vertex only

BFS(4)

4 0 2 6 7 5 3 1

12

Application of BFS: Shortest
Path

• If all edges have the
same cost, we find the minimum
distance between two nodes A and B by
performing a BFS from node A and stop
when node B was found.

Example: The travelling salesman
problem is the problem of finding the shortest
path that goes through every vertex exactly
once, and returns to the start

13

There is more…

• Other Graph Searching Algorithms:

–Bidirectional search (BDS)

– Iterative deepening search (IDS)

14

Graph Modeling

• Conversion of a problem into a graph
problem

• Essential in solving most graph
problems

15

Basics of graph modeling

• Identify the vertices and the edges

• Identify the objective of the problem

• State the objective in graph terms

• Implementation:

– construct the graph from the input instance

– run the suitable graph algorithms on the graph

– convert the output to the required format

16

Well-known Applications

• Social networks

• The salesman problem

• The timetable problem

Ex. 1

• Open adjacencymatrix.cpp and solve the exercises marked

with ///Task

– ///Task: correct the constructor argument based on the

number of the vertices from the ppt from the lab

– ///Task: complete the adding edges based on the ppt

from the lab

– ///Task: apply DFS from vertex 4 and BFS from vertex 4

Exercise 2
• Let’s consider un undirected graph, representing a social

network. Given an user, display all his friends (or information
about them) having the degree <=N (N is given).

• A is friend with B if there is an edge between A and B; we
say that the degree of friendship is 1. Friends of friends have

the degree of friendship 2. Use the matrix representation of
graphs from Ex. 1.

Exercise 3

• Check if a graph is bipartite and if so, display the

components of those two sets A and B. Use the

matrix representation of graphs from Ex. 1.

• Check your code for the following graphs:

– G1=({ 1,2,3,4,5,6,7,8,9},{ 12, 13, 45, 56, 75,

24, 58, 79, 43, 89})

– G2=({ 1,2,3,4,5,6,7,8,9},{ 12, 13, 45, 56, 75,

24, 58, 79, 43, 89,47})

Tips

• In the mathematical field of graph theory,
a bipartite graph (or bigraph) is
a graph whose vertices can be divided into
two disjoint sets and such that
every edge connects a vertex in to one in ;
that is, and are each independent
sets. Equivalently, a bipartite graph is a
graph that does not contain any odd-
length cycles.(Wikipedia)

• Use BFS:

http://www.personal.kent.edu/~rmuhamma/Alg
orithms/MyAlgorithms/GraphAlgor/breadthS
earch.htm

http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/breadthSearch.htm
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/breadthSearch.htm
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/breadthSearch.htm

	Slide 1
	Slide 2: What is a graph?
	Slide 3: Representation of Graphs
	Slide 4
	Slide 5: Depth-First Search (DFS)
	Slide 6: Implementation
	Slide 7: Application of DFS: Topological Sort
	Slide 8: Example: Teacher’s Problem
	Slide 9: Breadth-First Search (BFS)
	Slide 10: Simulation of BFS
	Slide 11: Implementation
	Slide 12
	Slide 13: There is more…
	Slide 14: Graph Modeling
	Slide 15: Basics of graph modeling
	Slide 16: Well-known Applications
	Slide 17: Ex. 1
	Slide 18: Exercise 2
	Slide 19: Exercise 3
	Slide 20: Tips

